The cpk model of recessive PKD shows glutamine dependence associated with the production of the oncometabolite 2-hydroxyglutarate.

نویسندگان

  • Vicki J Hwang
  • Jeffrey Kim
  • Amy Rand
  • Chaozhe Yang
  • Steve Sturdivant
  • Bruce Hammock
  • P Darwin Bell
  • Lisa M Guay-Woodford
  • Robert H Weiss
چکیده

Since polycystic kidney disease (PKD) was first noted over 30 years ago to have neoplastic parallels, there has been a resurgent interest in elucidating neoplasia-relevant pathways in PKD. Taking a nontargeted metabolomics approach in the B6(Cg)-Cys1(cpk/)J (cpk) mouse model of recessive PKD, we have now characterized metabolic reprogramming in these tissues, leading to a glutamine-dependent TCA cycle shunt toward total 2-hydroxyglutarate (2-HG) production in cpk compared with B6 wild-type kidney tissue. After confirmation of increased 2-HG expression in immortalized collecting duct cpk cells as well as in human autosomal recessive PKD tissue using targeted analysis, we show that the increase in 2-HG is likely due to glutamine-sourced α-ketoglutarate. In addition, cpk cells require exogenous glutamine for growth such that inhibition of glutaminase-1 decreases cell viability as well as proliferation. This study is a demonstration of the striking parallels between recessive PKD and cancer metabolism. Our data, once confirmed in other PKD models, suggest that future therapeutic approaches targeting this pathway, such as using glutaminase inhibitors, have the potential to open novel treatment options for renal cystic disease.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A high-throughput fluorimetric assay for 2-hydroxyglutarate identifies Zaprinast as a glutaminase inhibitor.

UNLABELLED Recently identified isocitrate dehydrogenase (IDH) mutations lead to the production of 2-hydroxyglutarate (2HG), an oncometabolite aberrantly elevated in selected cancers. We developed a facile and inexpensive fluorimetric microplate assay for the quantitation of 2HG and performed an unbiased small-molecule screen in live cells to identify compounds capable of perturbing 2HG producti...

متن کامل

Glutamine-derived 2-hydroxyglutarate is associated with disease progression in plasma cell malignancies.

The production of the oncometabolite 2-hydroxyglutarate (2-HG) has been associated with c-MYC overexpression. c-MYC also regulates glutamine metabolism and drives progression of asymptomatic precursor plasma cell (PC) malignancies to symptomatic multiple myeloma (MM). However, the presence of 2-HG and its clinical significance in PC malignancies is unknown. By performing 13C stable isotope reso...

متن کامل

Cystin, a novel cilia-associated protein, is disrupted in the cpk mouse model of polycystic kidney disease.

The congenital polycystic kidney (cpk) mutation is the most extensively characterized mouse model of polycystic kidney disease (PKD). The renal cystic disease is fully expressed in homozygotes and is strikingly similar to human autosomal recessive PKD (ARPKD), whereas genetic background modulates the penetrance of the corresponding defect in the developing biliary tree. We now describe the posi...

متن کامل

Development of autosomal recessive polycystic kidney disease in BALB/c-cpk/cpk mice.

Autosomal recessive polycystic kidney disease (ARPKD) is a rare but devastating inherited disease in humans. Various strains of mice that are homozygous for the cpk gene display renal pathology similar to that seen in human ARPKD. The PKD progresses to renal insufficiency, azotemia, and ultimately a uremic death by approximately 3 wk of age. This study characterizes PKD in mice that are homozyg...

متن کامل

Caspase-3 gene deletion prolongs survival in polycystic kidney disease.

Pan-caspase inhibition reduces tubular apoptosis and proliferation and slows progression of disease in a rat model of polycystic kidney disease (PKD). It is unknown, however, which specific caspases are involved in PKD progression. Because caspase-3 is a major mediator of apoptosis, its role in autosomal recessive PKD was determined. Mice with caspase-3 gene deletion were crossed with mice harb...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Renal physiology

دوره 309 6  شماره 

صفحات  -

تاریخ انتشار 2015